
CD 
C3 

(Enlumbta HnterBttg 
tn % (City of £ruj fork 

DEPARTMENT OF CIVIL ENGINEERING 

C3 GO 

RESPONSE OF AN ELASTIC SOLID 

TO  AN  OSCILLATING  PRESSURE 

WITHIN  A  CAVITY 

by 

R. D. MINDLIN •d T. R. KANE 

Office of Naval Research Project NR-064-388 

Contract Nonr-266(09) 

Technical Report No. 7 

CU-8-53-ONn--,6(09)-CE 

April 1953 



(Cfllumbta Mniurrailij 
in iltr (£ttu. of 3frm $orh 

DEPARTMENT OF CIVIL ENGINEERING 

RESPONSE OF AN ELASTIC SOLID 

TO  AN  OSCILLATING  PRESSURE 

WITHIN A  CAVITY 

by 

R. D. MINDLIN and T. R. KANE 

Office of Naval Research Project NR-064-388 

Contract Nonr-266(09) 

Technical Report No. 7 

CU8-53-ONR-266(09)-CE 

April 19?3 



ABSTRACT 

A uniformly distributed normal traction, Tarying harmonically 

with time, is applied to the surface of a spherical cavity In an In- 

finite homogeneous, isotropic, elastic solid, The response of the 

system Is found to be similar to that usually associated with damped 

vibrations of bodies containing reflecting boundaries. An explanation 

is obtained by comparing the elastic system with a damped, simple 

oscillator. The same problem is then solved for a cylindrical cavity 

of circular section and Infinite length. 
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ffiSPQBS OF .iK ELASTIC SOLID TO AN OSCILLATING PRESSDBE WITHIN A CAVITY 

Diverging Spherical Mm* 

The body is referred to a system of spherical coordinates /•* , -&-^T » 

with origin at the center of the cavity.   (Fig. 1) 

The equation of small motion of an isotropiu elastic body » 

becomes, on the assumption that     u^= U^C^t) t CL<* ^=-0, 

(1) 

QF'&.Ztdc/mJ.'y& (2) 

where 

'H&, 

la the velocity of dllatational waves. 

It may be verified by substitution that (2) is identically satisfied 

by the diverging wave, 

* -%l*t*-ct] 
Using tor/'   the real part of  H£. , with X  an, as yet, undeter- 

mined wave number and fl  a complex constant, we have, 

1.    A. E. H. Love, Theory of Elasticity,  (Dover Publications, New York, 
19U), Ath Edition, p. 273. 
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The stress components    Vprj   (fo J  fc^      «J*e gi»»n by 

Hence 

vhar© 

' ty       Z(/-2<r) 

and p~ is Poisson's ratio. 

Earstd Srtwrtoftl ttgllan 

If the applied force is 

we mist bare 

7 o - t'**t 

M-#a-4tf+(0* 

2.    Lore, p. H2, 

U) 

<?r~^[i>^£~±kj* (5) 

(6) 
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and 

k = HL . 
C 

The condition of vanishing traction for r/a-~*<r>   is satisfied. 

Prom (3) and (6) the amplitude of ur  on r ° a    is given by 

where the non-dimensicnal quantity p = Q**>      contains the effects of the 

forcing frequency} the radius of the cavity and the physical properties of 

the naterial. 

To obtain the radial displacement of points on the spherical surface 

when it is subjected to a uniformly distributed static pressure /, it is 

only necessary to set p~0    in (7), whence 

K+i-J    - ^E <«> static       - -4 — 
'r.a    V 

The displacement amplification factor is given by 

fair.*   . /        j±Cl      1 (9) 

Amplification factor versus p  is plotted for three values of Poisson's ratio 

in Fig. 2. 

The "critical" value of p , i.e., the value of p  which produces maximum 

amplification, is given by 

„[VW -1] h 
ft 

The corresponding critical value of the forcing frequency C&  is 
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The steady-8tet« response of the system is seen to be of a type usually 

associated with damped motions of bodies containing reflecting boundaries. 

This "resonant" behavior of tho infinite solid may be studied further by consid- 

ering the free vibrations of the system. 

rrtt ahtrtctl BaUaa 

For free motion of the body) 7~tr   must vanish on r*** G  .    Hence, from (5) 

a* ' a    ^      > 
so that 

&-±t-kl (11) 

where 

ih 

(Note that IP and f» are positive, real quantities since   /3 ^ //3    for 

-/& T~^l/Z.>    Also, we may replace ± 4,   , by   fi as the minus sign merely 

introduces a phase change in the displacements.) 

We must ascertain whether or not the complex value of K  given in  (11) 

gives rise, upon substitution into (3) and  (5), to displacements and tractions 

which vanith at infinity.    We observe that 

coc = c_Pc = cLfi+2A" -u   • (10) I 
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C2J 

where A   ie a complex constant and   Hy, (wr)    ia a Hankel function of the 

second klr.d.     These functions vanish at infinity when the imaginary part of 

their art^ument is negative } as it is in this case, according to   (11). 

The motion is a diverging wave.     A complex circular frequency of particle 

motion,Xi   , may be defined to characterize the time dependence of the disple.ce- 

mer-ts, 

Jlm  tccM.-Jii). (13) 

We note, for future reference, that the relationship between the critical fre- 

quency of forced motion, CO    » and the complex frequency associated with free 

motion, _C2-  » i8 givan from (10), (12) and (13) by 

co    tJZSlLVl+LA"-lJ (u) 

Slipje QecJI^f^gr 

Consider now the response of a Voigt Element.    A spring  (spring constant 

= 5 , dash-pot   (coefficient of viscous damping = n   ) and mass   (tn ) are arranged 

as shown in Fig.   3. 

The free vibrations of fff are characterized by the complex frequency 

where 
+    xr- 

C00 miVj£      is the natural frequency of undamped motion and 

(X**Z&}0m is the fraction of critical damping. 

(15) 

3.    Jahnke and Erode, Tables of Functions,   (Dover Publications, New York, 
1945), 4th Edition,  p.  133. 
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If the support N is forced to perform harmonic oscillations with a 

circular frequency,   CO   , the ratic of the amplitude of the steady-pt-vte 

motion of fTJ to the amplitude of the forced motion of A/ is given by the 

amplification factor 

r t  7 'A 

Maximum amplification occurs when the forcing frequency, 60   » takes on the 

critical value 

»* £[Y£&? -if 
c       Z<x 

or, expressed in terms of _/2 » from (15)» 

to* -d*fl/ua«L'/J (17) 

The resonant response of this system is attributed to the fact that the 

forced motion excites a possible mode of free motion. Maximum response is ob- 

tained when the frequencies of the respective motions are related as in (17). 

Ccnparlaon between Simple OsollUtor 

and Spherical Motion of Elastic Contiauua 

Comparison of (9) and (16) shows that the amplification factors for the 

infinite soli\  and the Voigt Elenent have the same form. It is thus possible 

to ld«nttfy the parameters of one system with their counterparts in the other, 

and we may, for instance, discuss the infinite solid in terms of the oscillator 

if we change 
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p    ,   2*r££ 
< 

(18) 

Further, the relation between critical forcing frequency and natural frequency 

is the sane in the two systems.    Performing in   (14) the changes indicated by 

(18), we haTev 

»c~ £« 117^ - fhof - Lo< 

and this is identical with the corresponding relation for the oscillator as 

given by (17). 

The resonant response of the infinite body may then be interpreted as 

follows:    lhe system is capable of performing a free, radial) oscillatory 

motion which has a transient character.    Damping of the motion is due to the 

fact that the energy stored in the system at any instant is thereafter propa- 

gated outward radially, there being no reflecting boundaries.    The free motion 

has associated with it a definite frequency of undamped particle oscillation, 

60o  , giren by the modulus of the complex frequency__f2. , that is, from  (12) 

and (13), 

This may be compared with the natural frequency of radial vibration of a spher- 

ioal shell    of radius & x 

2.UAL l+<r 
al'e 7=r~ 

4.    Love, p. 287. 
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Thus, the undamped natural frequency of an irt'inite body with a spherical 

cavity of radius Q  is the same as the frequency of a spherical shell of 

radius tfi(l+r)/(l—9~)     . When harmonic surface tractions are applied across 

the surface of the spherical cavity, the forced motion, thereby induced, ex- 

cites the free motion and resonance occurs. 

Diverging Cylindrical 

The body is referred to a system of cylindrical coordinates K , •& % £ , 

the 2-axis being coincident with the axis of the cylinder. (Fig. 4) 

Assuming 14 -Ut(t~jt) tf-m U «* O » the aquation of motion (1) reduces 

to 

Lfll(n4rL'^k (19) 

The solution of (19) which corresponds to diverging waves , is 

<*> cfaM+iyajJi (20) 

where   k is an, as yet, undetermined wave number, £   is a complex constant, 

and £/   and l,   are Beseel's  functions of order one, of the first and second kind 

respectively. 

The stress components    C£"r    0^$. t   <£"e      **"• gi^»n hy 

G-fyM+p.jfe,   «-*;-*• <21> 

5. Lamb, Hydrodynamics, (Dover Publications, New York, 1932), 6th Edition, 
p. 524. 

6* Love, p. 288. 
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Substituting  (20) into  (21), 

CFr = £ /^^»r) * M 'Z^rtjUr)] 

iDXfo) * a+$»)rtytt)])< 
Jet 

(22) 

where primes denote differentiation with respect to the argument. 

Foroed Cylindrical Motion 

The condition 

rJ 7-J    = P*_ 
-ClOt 

r-e* 

requires that 

Id- aPfcwta) +a+$»)«Wt«)f 

(23) 

and       A « ^2- 
C 

The condition of vanishing traction for r/a—~*>     is satisfied. 

From (20) and (23), the amplitude of Cfr   on /"« a    is given by 

I* 

where 

= aj±  .   /3's A+f» m Zkzl? P-  -c   > 1-ZfT 

(2J.) 

and <Z  , Y  are Bessel's functions of order zero. 
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The radial displacement of points on the cylindrical surface, when it 

is subjected to a uniformly distributed static pressure / , is obtained at the 

limit of (24) as p—O  . Thus, 

The displacement amplification factor is given by 

Mr-* m ( Jp+Y'U /A 

Amplification factor versus p  is plotted for three values of Poisson's ratio, 

in Fig. 5. Here, again, it is seen that the amplification factor has the char- 

acter of that of a simple oscillator. However, in this -asa, explicit formulas 

cannot be obtained for the undamped natural frequency and diameter of the equi- 

valent cylindrical shell. 
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F*g.  1:      Spherical Cavity 
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Fig.  3 :      Voigt Element 
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Fig. A:  Cylindrical Cavity 
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Fig.  5:      Amplification Factor - Cylindrical Cavity 
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